99 research outputs found

    Discrete differential calculus, graphs, topologies and gauge theory

    Full text link
    Differential calculus on discrete sets is developed in the spirit of noncommutative geometry. Any differential algebra on a discrete set can be regarded as a `reduction' of the `universal differential algebra' and this allows a systematic exploration of differential algebras on a given set. Associated with a differential algebra is a (di)graph where two vertices are connected by at most two (antiparallel) arrows. The interpretation of such a graph as a `Hasse diagram' determining a (locally finite) topology then establishes contact with recent work by other authors in which discretizations of topological spaces and corresponding field theories were considered which retain their global topological structure. It is shown that field theories, and in particular gauge theories, can be formulated on a discrete set in close analogy with the continuum case. The framework presented generalizes ordinary lattice theory which is recovered from an oriented (hypercubic) lattice graph. It also includes, e.g., the two-point space used by Connes and Lott (and others) in models of elementary particle physics. The formalism suggests that the latter be regarded as an approximation of a manifold and thus opens a way to relate models with an `internal' discrete space ({\`a} la Connes et al.) to models of dimensionally reduced gauge fields. Furthermore, also a `symmetric lattice' is studied which (in a certain continuum limit) turns out to be related to a `noncommutative differential calculus' on manifolds.Comment: 36 pages, revised version, appendix adde

    Bi-differential calculus and the KdV equation

    Full text link
    A gauged bi-differential calculus over an associative (and not necessarily commutative) algebra A is an N-graded left A-module with two covariant derivatives acting on it which, as a consequence of certain (e.g., nonlinear differential) equations, are flat and anticommute. As a consequence, there is an iterative construction of generalized conserved currents. We associate a gauged bi-differential calculus with the Korteweg-de-Vries equation and use it to compute conserved densities of this equation.Comment: 9 pages, LaTeX, uses amssymb.sty, XXXI Symposium on Mathematical Physics, Torun, May 1999, replaces "A notion of complete integrability in noncommutative geometry and the Korteweg-de-Vries equation

    All bicovariant differential calculi on Glq(3,C) and SLq(3,C)

    Full text link
    All bicovariant first order differential calculi on the quantum group GLq(3,C) are determined. There are two distinct one-parameter families of calculi. In terms of a suitable basis of 1-forms the commutation relations can be expressed with the help of the R-matrix of GLq(3,C). Some calculi induce bicovariant differential calculi on SLq(3,C) and on real forms of GLq(3,C). For generic deformation parameter q there are six calculi on SLq(3,C), on SUq(3) there are only two. The classical limit q-->1 of bicovariant calculi on SLq(3,C) is not the ordinary calculus on SL(3,C). One obtains a deformation of it which involves the Cartan-Killing metric.Comment: 24 pages, LaTe

    Multicomponent Burgers and KP Hierarchies, and Solutions from a Matrix Linear System

    No full text
    Via a Cole-Hopf transformation, the multicomponent linear heat hierarchy leads to a multicomponent Burgers hierarchy. We show in particular that any solution of the latter also solves a corresponding multicomponent (potential) KP hierarchy. A generalization of the Cole-Hopf transformation leads to a more general relation between the multicomponent linear heat hierarchy and the multicomponent KP hierarchy. From this results a construction of exact solutions of the latter via a matrix linear system

    Burgers and Kadomtsev-Petviashvili hierarchies: A functional representation approach

    Full text link

    A new approach to deformation equations of noncommutative KP hierarchies

    Full text link
    Partly inspired by Sato's theory of the Kadomtsev-Petviashvili (KP) hierarchy, we start with a quite general hierarchy of linear ordinary differential equations in a space of matrices and derive from it a matrix Riccati hierarchy. The latter is then shown to exhibit an underlying 'weakly nonassociative' (WNA) algebra structure, from which we can conclude, refering to previous work, that any solution of the Riccati system also solves the potential KP hierarchy (in the corresponding matrix algebra). We then turn to the case where the components of the matrices are multiplied using a (generalized) star product. Associated with the deformation parameters, there are additional symmetries (flow equations) which enlarge the respective KP hierarchy. They have a compact formulation in terms of the WNA structure. We also present a formulation of the KP hierarchy equations themselves as deformation flow equations.Comment: 25 page

    Coframe teleparallel models of gravity. Exact solutions

    Get PDF
    The superstring and superbrane theories which include gravity as a necessary and fundamental part renew an interest to alternative representations of general relativity as well as the alternative models of gravity. We study the coframe teleparallel theory of gravity with a most general quadratic Lagrangian. The coframe field on a differentiable manifold is a basic dynamical variable. A metric tensor as well as a metric compatible connection is generated by a coframe in a unique manner. The Lagrangian is a general linear combination of Weitzenb\"{o}ck's quadratic invariants with free dimensionless parameters \r_1,\r_2,\r_3. Every independent term of the Lagrangian is a global SO(1,3)-invariant 4-form. For a special choice of parameters which confirms with the local SO(1,3) invariance this theory gives an alternative description of Einsteinian gravity - teleparallel equivalent of GR. We prove that the sign of the scalar curvature of a metric generated by a static spherical-symmetric solution depends only on a relation between the free parameters. The scalar curvature vanishes only for a subclass of models with \r_1=0. This subclass includes the teleparallel equivalent of GR. We obtain the explicit form of all spherically symmetric static solutions of the ``diagonal'' type to the field equations for an arbitrary choice of free parameters. We prove that the unique asymptotic-flat solution with Newtonian limit is the Schwarzschild solution that holds for a subclass of teleparallel models with \r_1=0. Thus the Yang-Mills-type term of the general quadratic coframe Lagrangian should be rejected.Comment: 28 pages, Latex error is fixe

    Lovelock inflation and the number of large dimensions

    Get PDF
    We discuss an inflationary scenario based on Lovelock terms. These higher order curvature terms can lead to inflation when there are more than three spatial dimensions. Inflation will end if the extra dimensions are stabilised, so that at most three dimensions are free to expand. This relates graceful exit to the number of large dimensions.Comment: 16 pages, 1 figure. v2: published version, added clarification

    Matrix theory of gravitation

    Full text link
    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.Comment: 24 page

    Classification of bicovariant differential calculi on the Jordanian quantum groups GL_{g,h}(2) and SL_{h}(2) and quantum Lie algebras

    Full text link
    We classify all 4-dimensional first order bicovariant calculi on the Jordanian quantum group GL_{h,g}(2) and all 3-dimensional first order bicovariant calculi on the Jordanian quantum group SL_{h}(2). In both cases we assume that the bicovariant bimodules are generated as left modules by the differentials of the quantum group generators. It is found that there are 3 1-parameter families of 4-dimensional bicovariant first order calculi on GL_{h,g}(2) and that there is a single, unique, 3-dimensional bicovariant calculus on SL_{h}(2). This 3-dimensional calculus may be obtained through a classical-like reduction from any one of the three families of 4-dimensional calculi on GL_{h,g}(2). Details of the higher order calculi and also the quantum Lie algebras are presented for all calculi. The quantum Lie algebra obtained from the bicovariant calculus on SL_{h}(2) is shown to be isomorphic to the quantum Lie algebra we obtain as an ad-submodule within the Jordanian universal enveloping algebra U_{h}(sl(2)) and also through a consideration of the decomposition of the tensor product of two copies of the deformed adjoint module. We also obtain the quantum Killing form for this quantum Lie algebra.Comment: 33 pages, AMSLaTeX, misleading remark remove
    corecore